Numerical Solution of Volterra-Fredholm Integral Equations with The Help of Inverse and Direct Discrete Fuzzy Transforms and Collocation Technique

Authors

  • F. Mokhtari q
  • M. Maghasedi Maghasedi
  • R. Ezzati q
Abstract:

This article doesn't have abstract

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Numerical Solution of Volterra-Fredholm Integral Equations with The Help of Inverse and Direct Discrete Fuzzy Transforms and Collocation Technique

Abstract In this paper, a new approach to the numerical solution of VolterraFredholm integral equations by using expansion method based on the composition of the inverse and direct discrete fuzzy transforms (shortly F-transforms) in combination with the collocation technique is proposed. First, the unknown function is approximated by using the composition of the inverse and direct discrete F-tr...

full text

existence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types

بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی ‎‏بیان شد‎‎‏ه اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...

15 صفحه اول

Numerical solution of Hammerstein Fredholm and Volterra integral equations of the second kind using block pulse functions and collocation method

In this work, we present a numerical method for solving nonlinear Fredholmand Volterra integral equations of the second kind which is based on the useof Block Pulse functions(BPfs) and collocation method. Numerical examplesshow eciency of the method.

full text

Numerical solution of two-dimensional fuzzy Fredholm integral equations using collocation fuzzy wavelet like ‎operator‎

In this paper‎, ‎first we propose a new method to approximate the solution of two-dimensional linear fuzzy Fredholm integral equations of the second kind based on the fuzzy wavelet like operator‎. ‎Then‎, ‎we discuss and investigate the convergence and error analysis of the proposed method‎. ‎Finally‎, ‎to show the accuracy of the proposed method‎, ‎we present two numerical ‎examples.‎

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 4  issue 3

pages  221- 229

publication date 2012-08-01

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023